115 research outputs found

    A Model of Colonic Crypts using SBML Spatial

    Full text link
    The Spatial Processes package enables an explicit definition of a spatial environment on top of the normal dynamic modeling SBML capabilities. The possibility of an explicit representation of spatial dynamics increases the representation power of SBML. In this work we used those new SBML features to define an extensive model of colonic crypts composed of the main cellular types (from stem cells to fully differentiated cells), alongside their spatial dynamics.Comment: In Proceedings Wivace 2013, arXiv:1309.712

    Efficient computational strategies to learn the structure of probabilistic graphical models of cumulative phenomena

    Full text link
    Structural learning of Bayesian Networks (BNs) is a NP-hard problem, which is further complicated by many theoretical issues, such as the I-equivalence among different structures. In this work, we focus on a specific subclass of BNs, named Suppes-Bayes Causal Networks (SBCNs), which include specific structural constraints based on Suppes' probabilistic causation to efficiently model cumulative phenomena. Here we compare the performance, via extensive simulations, of various state-of-the-art search strategies, such as local search techniques and Genetic Algorithms, as well as of distinct regularization methods. The assessment is performed on a large number of simulated datasets from topologies with distinct levels of complexity, various sample size and different rates of errors in the data. Among the main results, we show that the introduction of Suppes' constraints dramatically improve the inference accuracy, by reducing the solution space and providing a temporal ordering on the variables. We also report on trade-offs among different search techniques that can be efficiently employed in distinct experimental settings. This manuscript is an extended version of the paper "Structural Learning of Probabilistic Graphical Models of Cumulative Phenomena" presented at the 2018 International Conference on Computational Science

    Modeling cumulative biological phenomena with Suppes-Bayes Causal Networks

    Get PDF
    Several diseases related to cell proliferation are characterized by the accumulation of somatic DNA changes, with respect to wildtype conditions. Cancer and HIV are two common examples of such diseases, where the mutational load in the cancerous/viral population increases over time. In these cases, selective pressures are often observed along with competition, cooperation and parasitism among distinct cellular clones. Recently, we presented a mathematical framework to model these phenomena, based on a combination of Bayesian inference and Suppes' theory of probabilistic causation, depicted in graphical structures dubbed Suppes-Bayes Causal Networks (SBCNs). SBCNs are generative probabilistic graphical models that recapitulate the potential ordering of accumulation of such DNA changes during the progression of the disease. Such models can be inferred from data by exploiting likelihood-based model-selection strategies with regularization. In this paper we discuss the theoretical foundations of our approach and we investigate in depth the influence on the model-selection task of: (i) the poset based on Suppes' theory and (ii) different regularization strategies. Furthermore, we provide an example of application of our framework to HIV genetic data highlighting the valuable insights provided by the inferred

    Parallel Implementation of Efficient Search Schemes for the Inference of Cancer Progression Models

    Full text link
    The emergence and development of cancer is a consequence of the accumulation over time of genomic mutations involving a specific set of genes, which provides the cancer clones with a functional selective advantage. In this work, we model the order of accumulation of such mutations during the progression, which eventually leads to the disease, by means of probabilistic graphic models, i.e., Bayesian Networks (BNs). We investigate how to perform the task of learning the structure of such BNs, according to experimental evidence, adopting a global optimization meta-heuristics. In particular, in this work we rely on Genetic Algorithms, and to strongly reduce the execution time of the inference -- which can also involve multiple repetitions to collect statistically significant assessments of the data -- we distribute the calculations using both multi-threading and a multi-node architecture. The results show that our approach is characterized by good accuracy and specificity; we also demonstrate its feasibility, thanks to a 84x reduction of the overall execution time with respect to a traditional sequential implementation

    Characterizing the Computational Power of Energy-Based P Systems

    Get PDF
    We investigate the computational power of energy-based P systems, a model of membrane systems where a fixed amount of energy is associated with each object and the rules transform single objects by adding or removing energy from them. We answer recently proposed open questions about the power of such systems without priorities associated to the rules, for both sequential and maximally parallel modes. We also conjecture that deterministic energy-based P systems are not computationally complete

    Stochastic Hybrid Automata with delayed transitions to model biochemical systems with delays

    Get PDF
    To study the effects of a delayed immune-response on the growth of an immuno- genic neoplasm we introduce Stochastic Hybrid Automata with delayed transi- tions as a representation of hybrid biochemical systems with delays. These tran- sitions abstractly model unknown dynamics for which a constant duration can be estimated, i.e. a delay. These automata are inspired by standard Stochastic Hybrid Automata, and their semantics is given in terms of Piecewise Determin- istic Markov Processes. The approach is general and can be applied to systems where (i) components at low concentrations are modeled discretely (so to retain their intrinsic stochastic fluctuations), (ii) abundant component, e.g., chemical signals, are well approximated by mean-field equations (so to simulate them efficiently) and (iii) missing components are abstracted with delays. Via sim- ulations we show in our application that interesting delay-induced phenomena arise, whose quantification is possible in this new quantitative framewor

    Analysis of the spatial and dynamical properties of a multiscale model of intestinal crypts

    Get PDF
    The preliminary analyses on a multiscale model of intestinal crypt dynamics are here presented. The model combines a morphological model, based on the Cellular Potts Model (CPM), and a gene regulatory network model, based on Noisy Random Boolean Networks (NRBNs). Simulations suggest that the stochastic differentiation process is itself sufficient to ensure the general homeostasis in the asymptotic states, as proven by several measures

    Self-Stabilization in Membrane Systems

    Get PDF
    In this paper we study a notion of self-stabilization, inspired from biology and engineering. Multiple variants of formalization of this notion are considered, and we discuss how such properties affect the computational power of multiset rewriting systems
    corecore